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Abstract
In biomedical imaging, between-subject comparabil-
ity is attained at the voxel level via image registra-
tion. This process requires several data preparation
steps, of which brain extraction is particularly prob-
lematic in preclinical applications. Current solutions
rely on human brain extraction library adaptations,
or full image processing — with introduce artefacts
via rostrocaudal cropping and peripheral hyperinten-
sities, respectively. We present a deep learning frame-
work for multi-contrast MRI brain tissue segmen-
taion, and benchmark its performance with respect
to novel workflow advances.

Introduction
Functional magnetic resonance imaging (fMRI) gives
an indirect measurement of brain activity by being
sensitive to the change of blood flow. It is one of
the most prominent neuroimaging tool for many ap-
plications, such as drug discovery (Borsook, Becerra
and Hargreaves, 2006) and neuromodeling (Friston,
Harrison and Penny, 2003). For fMRI studies, it
is necessary that all scans lie in a standard refer-
ence frame in order to make meaningful comparisons
across the subjects. The common coordinate system
enables a statistical evaluation of the likelihood of
consistent activation across a group or, in other con-
texts, the differences in anatomy between two groups.
Because of variability both in animal anatomy and
in animal preparation, the original MR acquired im-
ages are not defined in a common template space. To
solve this issue, scans need to be remapped to a ref-
erence frame via registration (Maintz and Viergever,
n.d.; Sotiras, Davatzikos and Paragios, 2013). As re-
ported by Ioanas et al., 2019, the legacy approach
for mouse-brain image registration is to modify the
data in order to conform to pre-existing functions, de-
signed and optimized for human brain imaging. This
requires the mouse-data to be adapted to the process-

ing function instead of vice-versa. Ioanas et al., 2019
establishes a novel workflow defined as generic, specif-
ically designed for mouse brain imaging, and bench-
marks it against the legacy procedure. While the re-
ported performance increase is considerable, registra-
tion is nonetheless influenced by intensity variations
outside the brain region. In-vivo as well as ex-vivo
MRI head scans, present higher variability in the vis-
cerocranial and extracranial tissue than in the neu-
rocranium and the brain region of interest. Usage of
unmasked (i.e. non brain extracted) data as done by
the generic method, can thus lead to stretching or
skewing of the brain during the registration process.
Computing the transformation solely on the brain vol-
ume removes disturbances induced by intensity vari-
ations outside the brain region and further improves
registration quality.

In recent years it has been shown that convolutional
neural networks give the best results for semantic im-
age segmentation in terms of precision and flexibility
(Geng, Zhou and Cao, 2018). Especially the U-Net
architecture from (Ronneberger, Fischer and Brox,
2015) is to this day one of the most popular in the field
of biomedical image segmentation. Training a neural
network into a classifier is a supervised method. This
means that the model needs to learn its parameters
based on observations of labeled data. Manually cre-
ating annotations as required to train a deep-learning
classifier for high-resolution data is often infeasible,
since it requires manual expert segmentation of vast
amounts of slices. In the medical domain especially,
human labeled data is expensive to acquire and thus
very scarce. A much more widely applicable approach
is to train the network using the template mask as
label together with registered scans. Registration is
not as precise as human labeling, but it is automatic
and does not depend on expert input. Tajbakhsh et
al., 2020 show that deep learning methods can indeed
show satisfiable results when trained with imperfect
training data. While our purpose was to create a
workflow that generates better masks than the one
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from the template space, we show that the latter can
be used as training data for the deep-learning model,
by applying small changes to it.

In this study we investigate whether and in how far
reliable classification can be obtained from imperfect
training data and whether preclinical image masking
improves an optimized registration workflow. We pro-
vide the methods as a free and open source softare
(FOSS) package (Klug, 2020, MLEBE) as well as the
functions needed for the data analysis in this arti-
cle as a RepSeP document (Ioanas and Rudin, 2018).
We evaluate the effects of our classifier on a full-
fledged registration workflow via the benchmarking
algorithms from Ioanas et al., 2019.

Classifier Implementation
We lay out a preparatory step to improve brain reg-
istration by specifically extracting the brain volume
from the MRI scans. Our solution utilises a machine
learning enabled brain tissue classifier, and the soft-
ware implementation is formulated to integrate with
the SAMRI Generic workflow (Ioanas et al., 2019),
in order to ensure broader usability and reproducible
benchmarking. It creates a mask of the brain re-
gion using a classifier, which is then used to extract
the region of interest. Two classifiers were trained,
one for scans acquired with RARE sequences yield-
ing T2-weighted contrast and one scans acquired with
gradient-echo EPI sequences yielding either BOLD
(Ogawa et al., 1990) and CBV (Marota et al., 1999)
contrasts (see section 3.2). The assignment of “brain”
and “not brain” annotation to each voxel in the scans
is performed via a trained U-Net, a popular neural
network for medical image segmentation first intro-
duced in Ronneberger, Fischer and Brox, 2015.

Workflow integration
The brain extraction nodes of the workflow return
both the masked input and the binary mask. The
latter is used to constrain image similarity metric esti-
mation on the relevant region of interest (ROI), while
the extracted brain volume is used to prevent drifting
of extracranial hyperintensities into the ROI. The reg-
istration transformation is applied to the unmasked
data to make the process minimally destructive. Fig-
ure 1b shows the integration of the classifier into the
SAMRI workflow in a simplified manner.

Training Data
To improve general-purpose application, training ex-
amples need to be drawn from a usually unknown
probability distribution, which is expected to be rep-
resentative of the space of occurrences. We set up
an occurence space from which the data of interest
is drawn, consisting of all the different mouse brain
MRI data sets coming from multiple experiments,
with their corresponding labels. Based on an approx-

imation of the occurrence space, the network builds a
general model that enables it to extrapolate and pro-
duce sufficiently accurate predictions in new cases. As
a training dataset, we use scans which were prepro-
cessed with the SAMRI 2019, SAMRI Generic work-
flow. This data thus contains scans mapped onto a
bregma-centered standard Ioanas et al., 2019 space
derived from the Toronto Hospital for Sick Children
Mouse Imaging Center brain template Dorr et al.,
2008. A template-based mask is available in the same
reference space, and constitutes a ground truth esti-
mation. As registration in the absence of brain ex-
traction is prone to imperfections, the mask does not
always align perfectly with the brain region of every
slice and some scans had to be removed manually.
Figure 1a depicts the training workflow of the classi-
fier.
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(a) Flowchart describing the training process of the classifier.
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(b) Flowchart describing the integration of the classifier into
the SAMRI Generic workflow in a simplified manner.

Figure 1: Flowcharts describing the training and the integration of the classifier in a simplified manner.

Methods
For the benchmarking of the two workflows, the same
methods that are described in the original paper have
been applied in this work. A more detailed description
can be found there.

Model
As the architecture of the classifier, the U-Net from
Ronneberger, Fischer and Brox, 2015 was chosen
based on its high performance in the field of biomed-
ical image segmentation. This is a convolutional neu-
ral network that consists of a contracting path that
captures context in addition to a symmetric expand-
ing path that enables precise localization. Localiza-
tion in this context means that a class label is assigned
to each pixel. We used the attention gated U-Net im-
plementation from Oktay et al., n.d. for which the
code is publicly available (Oktay, 2020). Addition-
ally to the original U-Net structure, their implementa-
tion has attention gates in the expanding part which
weight the information coming from the symmetric
counterpart. The additional parameters in these at-
tention gates allow the model to learn which region of
the image is important for specific tasks and to sup-
press irrelevant regions. In our use case this imple-
mentation helped reduce false positive classifications
of high intensities, outside of the mouse brain region.

The model was trained using the Dice loss, which
is computed from the Dice score. It calculates the
similarity of two binary samples X and Y with

Dcoef =
2|X ∩ Y |+ ε

|X|+ |Y |+ ε
(1)

where a smoothing factor ε of 0.01 is used.
It is a quantity ranging from 0 to 1 that is to be

maximized. The parameters of the model are updated
such that the objective 1−Dcoef is minimized.

The mask consists of much more background than
foreground which constitutes a class imbalance prob-
lem. Using the Dice coefficient as a loss function for
training should make it invariant to this class imbal-
ance (Milletari, Navab and Ahmadi, 2016).

Data Set
The data set consists of 3D MR images taken from an
aggregation of three studies: (Ioanas and Rudin, 2019,
irsabi), (Ioanas, Saab and Rudin, n.d.[a], opfvta),

(Ioanas, Saab and Rudin, n.d.[b], drlfom) and other
unpublished data, acquired with similar parameters.

The irsabi data set consists of 102 scans com-
ing from 11 adult animals, each scanned in up to 5
sessions with a 7T Bruker PharmaScan. The ses-
sions were repeated at 14 days intervals, each con-
taining one anatomical (echo-time: 21ms, inter-echo
spacing: 7ms, repetition time (TR): 2500ms) and
two functional (CBV and BOLD with a flip an-
gle of 60°) scans. The functional scans were sam-
pled at ∆x(ν) = 312.5 µm, ∆y(φ) = 281.25 µm, and
∆z(t) = 650 µm (slice thickness of 500 µm).

The opfvta data set consists of 106 scans coming
from 32 adult animals, each scanned in up to 8 ses-
sions with a 7T Bruker PharmaScan. The sessions
were repeated at ??? days intervals, each containing
one anatomical (echo-time: 30ms, inter-echo spacing:
10ms, repetition time (TR): 2950ms) and a functional
(CBV with a flip angle of 60°) scan. The functional
scans were sampled at ∆x(ν) = y(φ) = 75 µm and a
slice thickness of ∆z(t) = 450 µm.

The drlfom data set consists of 306 scans coming
from 39 adult animals, each scanned in up to 10 ses-
sions with a 7T Bruker PharmaScan. The sessions
were repeated at ??? days intervals, each containing
one anatomical (echo-time: 30ms, inter-echo spacing:
10ms, repetition time (TR): 2950ms) and a functional
(CBV with a flip angle of 60°) scan. The functional
scans were sampled at ∆x(ν) = y(φ) = 225 µm, and a
slice thickness ∆z(t) = 450 µm.

The measured animals were fitted with an optic
fiber implant (l = 3.2 mm d = 400 µm) targeting the
Dorsal Raphe (DR) nucleus in the brain stem. Us-
ing this dataset shows that the classifier is robust to
these types of experiment setups. Images from the
irsabi study are only used for quality control of the
registration and are thus unknown to the classifier. It
is the same dataset that was used to benchmark the
Generic workflow in the original paper and thus allows
for a better estimation of the general performance of
our improved pipeline.

The images are transformed into a standard space
using a template mask via (SAMRI 2019, SAMRI)
and are thus defined in the same affine space. SAMRI
is a data analysis package of the ETH/UZH Institute
for Biomedical Engineering. It is equipped with an
optimized registration workflow and standard geomet-

2021-08-13 Page 3 of 16



Machine Learning Enabled Brain Segmentation for Small Animal Neuroimaging Registration

(a) Example of an unpreprocessed slice. (b) Example of a preprocessed slice.

Figure 2: The preprocessing removes the mask there, where the image-pixelvalues are 0. Plots of the same image, superposed
with the template mask, with and without preprocessing.

ric space for small animal brain imaging (Ioanas et al.,
2019).

Because of variance in mouse brain anatomy and in
the experiment setup, some of the transformed data
do not overlap perfectly with the reference template.
To filter these images out, most of the incongruent
volumes were removed manually from the data set.

For the registration of the images, a padding was
needed to make the originally not affine space affine.
As a result, the 3D volumes present many zero-valued
slices, some of them overlapping with the mask.

Since it is not wanted for the model to predict a
mask on black slices, the mask is set to zero where
the image is zero-valued. This has also the advan-
tage of bringing variance into the template. Because
some pixels representing the brain tissue are zero-
valued, holes result from this operation. To patch
these, the function binary_fill_holes from the scipy
package (Virtanen et al., 2020) is used. An example
of the preprocessing can be seen in fig. 2.

Each volume of the transformed data is originally
of shape (63, 96, 48), matching the reference space
resolution of 200µm. The volume is then reshaped
into (64, 64, 96) by first zero-padding the smaller x-y
dimension to the same size as the bigger one. This is
done to conserve the ratio of the image. The z-axis
is zero-padded to 96. The scan is then reshaped into
(64, 64, 96) using the function cv2.resize from the
opencv python package (Bradski, 2000).

Finally, the images are normalized by first clipping
them from the minimum to the 99th percentile of the
data to remove outliers and then divided by the max-
imum.

The data set is separated into Training, Validation
and Test sets such that 90% of the total data are used
for training and validation while 10% are used for test-

ing. The Validation set is used for the optimization of
hyperparameters while the Test set is used as a mea-
sure of extrapolation capability. The irsabi data was
additionally added to the test set.

Data Augmentation
Because of diverse settings in the experiment setup,
including animal manipulations causing artifacts, MR
image quality can differ substantially between labs
and even individual study populations. To account for
these variations, we apply an extensive set of trans-
formations to our data. This includes rotations of up
to 20◦, a zoom range of -0.2 to +0.1, a random bias
field added on the images and horizontal as well as
vertical flips. Additionally a gaussian noise is added
to the images.

This not only increases the data set size but also
makes it more representative of the general data dis-
tribution of mice brain MR images and results in a
model with a better generalization capability.

Masking
To improve the SAMRI registration workflow, an ad-
ditional node is implemented where the images are
masked, such that only the brain region remains. The
image is first resampled into the resolution of the tem-
plate space, which has a voxel size of 0.2× 0.2× 0.2.
This is done with the Resample command from the
FSL library which is an analysis tool for FMRI, MRI
and DTI brain imaging data (Jenkinson et al., 2012).
Then, the image is preprocessed using the opera-
tions described in section 3.2. Since the classifier was
trained to predict on images of shape (64, 64, 96),
the input needs to be reshaped. The predictions of
the model are reconstructed to a 3D mask via the
command Nifit1Image from the neuroimaging python
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package nibabel (Neuroimaging in Python — NiBa-
bel 2.5.0 documentation n.d.). This is done using
the same affine space as the input image. The lat-
ter is then reshaped into the original shape inverting
the preprocessing step, either with the opencv resize
method or by cropping. Additionally, the binary mask
is resampled into its original affine space, before being
multiplied with the brain image to extract the ROI.

Metrics

The VCF uses the 66th voxel intensity percentile of
the raw scan before any processing as definition of
the brain volume. The VCF is then obtained with
eq. (2), where v is the voxel volume in the original
space, v′ the voxel volume in the transformed space,
n the number of voxels in the original space, m the
number of voxels in the transformed space, s a voxel
value sampled from the vector S containing all values
in the original data, and s′ a voxel value sampled from
the transformed data.

VCF =
v′
∑m

i=1[s′i ≥ P66(S)]

v
∑n

i=1[si ≥ P66(S)]
=
v′
∑m

i=1[s′i ≥ P66(S)]

vd0.66ne
(2)

The SCF metric is based on the ratio of smoothness
before and after processing. It is obtained by taking
the full-width at half-maximum of the signal ampli-
tude spatial autocorrelation function (ACF Eklund,
Nichols and Knutsson, 2016). In eq. (3), r is the dis-
tance of two amplitude distribution samples, a is the
relative weight of the Gaussian term in the model, b
is the width of the Gaussian and c the decay of the
mono-exponential term Cox et al., 2017.

ACF (r) = a ∗ e−r
2/(2∗b2) + (1− a) + e−r/c (3)

The for the MS relevant statistical power is ob-
tained via the negative logarithm of first-level p-value
maps. Voxelwise statistical estimates for the prob-
ability that a time course could — by chance alone
— be at least as well correlated with the stimulation
regressor as the voxel time course measured are av-
eraged via eq. (4), where n represents the number of
statistical estimates in the scan, and p is a p-value.

MS =

∑n
i=1−log(pi)

n
(4)

Statistics
In the results section, all statistics are presented with
respect to the distributions of the absolute distances
to 1, i.e. |1 - Metric|. Based on a Likelihood Ra-
tio Test, we chose models that do not examine the
Workflow- Contrast interaction. The full summaries
of the analysis can be seen in tables table S1, table S2,
table S3 and table S4.

Results
For the quality control of the workflow, we first evalu-
ate the classification process, followed by a benchmark
between the Generic and the improved "Masked"
workflow.

Classification
Quality control of our classifier is difficult in the sense
that the template mask does not always overlap per-
fectly with the brain region, such that small deviances
of the predictions compared to the template could ac-
tually be caused by the prediction being more accu-
rate than the template. Nevertheless, it is useful to
verify whether the output is similar to the template,
as it should be. As a similarity metric between the
template mask and the classifier output we have used
the Dice score (see eq. (1)). The average Dice score
on the test data set is Dcoef = 0.982, indicating that
classifier output has only minor changes in compari-
son with the template.

Workflow
We use an established palette of workflow evalua-
tion metrics — inspecting volume and smoothness
conservation, as well as downstream effects on basic
functional analysis (Ioanas et al., 2019) — to bench-
mark the novel SAMRI Masked workflow against the
SAMRI Generic workflow. Statistics for the Volume
Conservation and the Smoothness Conservation are
presented with respect to the distributions of the ab-
solute distances to the optimal value 1.

A qualitative evaluation of the registered volume
shows that the classifier reduces the shifting of outer
brain regions into the brain region and improves the
quality of the registration. This can be seen in fig. 4,
comparing slices of three different registered volumes
with and without the help of the classifier.

Volume Conservation
Volume Conservation Factor (VCF) measures the reg-
istration induced deformation of the scanned brain, by
computing the ratio of the brain volume before and af-
ter preprocessing. A positive ratio indicates that the
brain was stretched to fill the template space, while
a negative ratio indicates that non-brain voxels were
introduced in the template brain space. Volume con-
servation is highest for a VCF equal to 1, indicating
that the preprocessing has no influence on the brain
volume of the scans.

As seen in fig. 5c, we note that in the described
dataset the absolute distance of the VCF to 1 is sen-
sitive to the workflow (F1,133 =4.529, p=0.035). The
performance of the Generic SAMRI workflow is dif-
ferent from that of the Masked, yielding a two-tailed
p-value of 0.019. With respect to the data break-up
by contrast (CBV versus BOLD, fig. 5a), we see no
notable main effect for the contrast variable (VCF of
0.01, 95%CI: 0.00 to 0.03 1).
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Figure 3: The Classifier predicts a similar mask to the ground truth. Randomly picked plots from the test set illustrate the
predictions of the classifier. The first row presents the input image, the second the ground truth and the third row shows the
predictions of the classifier.

Generic

Masked

Figure 4: The Masked workflow prevents the shifting of outer-brain region voxels into the template-brain region (in blue).
Comparison of slices from 3 different volumes, registered with the Generic (first row) and the Masked (second row) workflow.
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We note that there is a significant variance de-
crease in all conditions for the Masked workflow
(0.44-fold). Further, we note that the root mean
squared error ratio favours the Masked workflow
(RMSEM/RMSEG '0.66).

Smoothness Conservation
Smoothing is a popular tool employed by many pre-
processing functions to increase the signal-to-noise ra-
tio. Image smoothness comes at the cost of image con-
trast as well as feature saliency and has been shown
to result in inferior anatomical alignment due to the
loss of spatial resolution (Esteban et al., 2019). As an
indicator of image smothness induced by the work-
flow, the Smoothness Conservation Factor (SCF) ex-
presses the ratio between the smoothness of the pre-
processed images and the smoothness of the original
images. Smoothess Conservation is highest for a SCF
equal to 1, indicating that the preprocessing does not
influence image smoothness.

While the performance of the Generic
SAMRI workflow is only slightly different from
that of the Masked workflow, the root mean
squared error ratio favors the Masked workflow
(RMSEM/RMSEG '0.96).

Descriptively, we observe that neither the Generic
nor the Masked workflow introduce a strong smooth-
ing (SCF of 0.00, 95%CI: −0.01 to 0.01 1).

Further, we note that there is a slight variance de-
crease for the Masked workflow (0.92 -fold).

Given the break-up by contrast shown in fig. 5b, we
see no effect for the contrast variable (SCF of 0.03,
95%CI: 0.01 to 0.05 1).

Functional Analysis
Functional Analysis expresses the significance de-
tected across all voxels of a scan by computing the
Mean Significance (MS) Ioanas et al., 2019.

We observe that the Masked level of the workflow
variable does not introduce a notable significance loss
(MS of −0.01, 95%CI: −0.03 to 0.01 1). Furthermore,
we note a slight variance decrease in all conditions for
the Masked workflow (0.95-fold).

With respect to the data break-up by contrast
(fig. S1), we see no notable main effect for the contrast
variable (MS of −0.09, 95%CI: −0.87 to 0.69 1).

Variance Analysis
As an additional metric for the comparison between
workflows, we evaluate if physiological meaningfull
variability is retained across repeated measurements.
It is based on the assumption that adult mouse brains
retain size, shape, and implant position in the ab-
sence of intervention, throughout the 8 week study
period Ioanas et al., 2019. Examining the similarity
between the template and preprocessed scans, session-
wise variability should be smaller than subject-wise
variability. This comparison is performed using a type
3 ANOVA, modeling both the subject and the ses-

sion variables. For this assessment three metrics are
used, with maximal sensitivity to different features:
Neighborhood Cross Correlation (CC, sensitive to lo-
calized correlation), Global Correlation (GC, sensitive
to whole-image correlation), and Mutual Information
(MI, sensitive to whole-image information similarity).

Both, the Generic and the Masked workflow pro-
duce results which show a higher F-statistic for the
subject than for the session variable. For the Masked
workflow, F-statistics show: CC (subject: F10,19 =
9.035, p = 2.58× 10−5, session: F4,19 = 6.127, p =
0.0024), GC (subject: F10,19 = 3.291, p = 0.012,
session: F4,19 = 2.021, p = 0.13), and MI (subject:
F10,19 = 1.31, p = 0.29, session: F4,19 = 1.392, p =
0.27).

For the Generic SAMRI workflow, resulting data
F-statistics show: CC (subject: F10,19 = 3.662, p =
0.0072, session: F4,19 =3.09, p=0.041), GC (subject:
F10,19 = 2.053, p = 0.085, session: F4,19 = 1.432, p =
0.26), and MI (subject: F10,19 = 1.331, p= 0.28, ses-
sion: F4,19 =2.196, p=0.11).
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(a) Comparison of the VCF across workflows and functional con-
trasts.
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(b) Comparison of the SCF across workflows and functional con-
trasts.
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(c) Comparison of the distributions of the absolute VCF errors,
across workflows and functional contrasts.
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(d) Comparison of the distributions of the absolute SCF errors,
across workflows and functional contrasts.

Figure 5: Both the SAMRI Generic and the Masked workflow optimally and reliably conserve volume and smoothness, the
latter showing values that are closely distributed to 1. Plots showing the distribution of two target metrics in the first row,
together with the respective distributions of the absolute distances to 1 in the second row. Solid lines in the colored distribution
densities indicate the sample mean and dashed lines the inner quartiles.
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Discussion
The classifier improves the volume conservation,
smoothness conservation, and session-to-session con-
sistency of the SAMRI Generic workflow in terms of
precision while conserving accuracy.

Visual inspection of registration quality reveals that
the classifier successfully reduces the shifting of outer
brain region voxels into the template space.

These benefits of the classifier are robust to the
functional contrast (figs. 5a and 5b), with the Generic
Masking workflow being less or equally susceptible to
the contrast variable, when compared to the Generic
workflow.

The classifier improves the performance of the
SAMRI Generic workflow, making these accessible
in the same interface with the same advantages in
terms of transparency, parametrization, ease of pack-
age management, and non-destructive metadata man-
agement.

Our workflow has the advantage that the perfor-
mance of a Neural Network can increase when trained
further with new data. The FOSS distribution model
for both the classifier and workflow, as well as the
article, allows users to easily take advantage of the
classifier extendability and recreate the steps de-
scribed herein. Registering new data with the Generic
Maksed workflow can increase the size of the training
data set of the classifier. After removing possibly bad
registrations, the latter can be trained again, which
will improve its generalisation capability. Another ad-
vantage of the trainability of the classifier and the
openly published code is that this workflow can be
adapted to a wast variety of data types.

The complete workflow of this report is fully repro-
ducible and thus easily verifiable. We make public
the functions used for the masking in the workflow as
well as those used to train the classifier, through the
mlebe python package (Klug, 2020).

Conclusion

We present a brain labeling classifier, that when used
as a ROI extraction in an extention of the SAMRI
Generic registration workflow, significantly improves
the quality of the latter. The extended Generic
Masked workflow offers several advantages summa-
rized by established metrics for data features com-
monly biased by registration. Comparison with the
original SAMRI Generic workflow revealed superior
performance of the SAMRI Generic Masked workflow
in terms of volume and smoothness conservation, as
well as variance structure across subjects and sessions.
The easily accessible, optimized registration parame-
ters of the SAMRI Generic Workflow as well as the
open source code to the classifier training functions
make the pipeline transferable to any other imaging
applications. The open source software choices in
both the workflow and this article’s source code em-

power users to better verify, understand, remix, and
reuse our work.
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Figure S1: The Generic Masked workflow does not introduce a loss of significance. Comparison across workflows and
functional contrasts.
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Template

Single-Session Fit and Distortion Control
 Subject 4001 | Session ofMcF2 | Contrast CBV

(a) SAMRI Generic workflow, depicting an undistorted functional
scan intermediary;

Template

Single-Session Fit and Distortion Control
 Subject 4001 | Session ofMcF2 | Contrast T2

(b) SAMRI Generic workflow, depicting an undistorted structural
scan intermediary;

Template

Single-Session Fit and Distortion Control
 Subject 4001 | Session ofMcF2 | Contrast CBV

(c) SAMRI Generic Masked workflow, depicting an undistorted
functional scan intermediary;

Template

Single-Session Fit and Distortion Control
 Subject 4001 | Session ofMcF2 | Contrast T2

(d) SAMRI Generic Masked workflow, depicting an undistorted
structural scan intermediary;

Figure S2: The SAMRI Generic Masked provides a more accurate coverage of the template space. Depicted are slice-by-slice
inspections of the registration fit, with a spacing that is analogous to acquisition.
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generic_work

get_f_scan (utility)

get_s_scan (utility)

find_physio (utility)

dummy_scans (utility)

f_warp (ants)

events_file (utility)

datasink (io)

s_biascorrect (ants)

s_warp (ants)

s_register (ants) f_register (ants)

merge (utility)

slicetimer (fsl)

temporal_mean (fsl)

f_biascorrect (ants)

(a) “SAMRI Generic” workflow, based on the antsRegistration function.

masked_work

get_f_scan (utility)

f_mask (utility)

get_s_scan (utility)

find_physio (utility)

dummy_scans (utility)

f_warp (ants)

events_file (utility)

datasink (io)

f_biascorrect (ants)

f_register (ants)

_s_biascorrect (ants)

s_mask (utility)

s_warp (ants)

s_biascorrect (ants)

s_register (ants)

merge (utility)

slicetimer (fsl)

temporal_mean (fsl)

(b) “SAMRI Generic Masked” workflow, which is based on the antsRegistration function.
Two additional nodes provide the workflow with both the masked image and the binary mask.

Figure S3: Directed acyclic graphs visualising the two registration workflows. Each node name is depicted together with its
corresponding package name in paranthesis. The “utility” indication corresponds to nodes based on Python functions specific
to the workflow, distributed alongside it, and dynamically wrapped via Nipype.
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Table S1: Mixed Linear Model Regression Results – With
Processing/Contrast Interaction for the Volume Conservation
Factor

Model: MixedLM Dependent Variable: Q("Abs(1 - Vcf)")
No. Observations: 136 Method: REML
No. Groups: 68 Scale: 0.0008
Min. group size: 2 Log-Likelihood: 243.2700
Max. group size: 2 Converged: Yes
Mean group size: 2.0

Coef. Std.Err. z P> |z| [0.025 0.975]
Intercept 0.046 0.007 7.081 0.000 0.034 0.059
Processing[T.Masked] -0.010 0.007 -1.406 0.160 -0.024 0.004
Contrast[T.CBV] 0.015 0.009 1.619 0.105 -0.003 0.033
Processing[T.Masked]:Contrast[T.CBV] -0.008 0.010 -0.813 0.416 -0.028 0.011
Uid Var 0.001 0.009

Table S2: Mixed Linear Model Regression Results – Without
Processing/Contrast Interaction for the Volume Conservation
Factor

Model: MixedLM Dependent Variable: Q("Abs(1 - Vcf)")
No. Observations: 136 Method: REML
No. Groups: 68 Scale: 0.0008
Min. group size: 2 Log-Likelihood: 246.6337
Max. group size: 2 Converged: Yes
Mean group size: 2.0

Coef. Std.Err. z P> |z| [0.025 0.975]
Intercept 0.048 0.006 7.988 0.000 0.037 0.060
Processing[T.Masked] -0.014 0.005 -2.808 0.005 -0.024 -0.004
Contrast[T.CBV] 0.011 0.008 1.402 0.161 -0.004 0.026
Uid Var 0.001 0.009
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Table S3: Mixed Linear Model Regression Results – With
Processing/Contrast Interaction for the Smoothness Conser-
vation Factor

Model: MixedLM Dependent Variable: Q("Abs(1 - Scf)")
No. Observations: 136 Method: REML
No. Groups: 68 Scale: 0.0005
Min. group size: 2 Log-Likelihood: 250.2832
Max. group size: 2 Converged: Yes
Mean group size: 2.0

Coef. Std.Err. z P> |z| [0.025 0.975]
Intercept 0.032 0.007 4.659 0.000 0.019 0.046
Processing[T.Masked] -0.001 0.005 -0.261 0.794 -0.012 0.009
Contrast[T.CBV] 0.030 0.010 3.008 0.003 0.010 0.049
Processing[T.Masked]:Contrast[T.CBV] -0.003 0.008 -0.341 0.733 -0.018 0.012
Uid Var 0.001 0.015

Table S4: Mixed Linear Model Regression Results – Without
Processing/Contrast Interaction for the Smoothness Conser-
vation Factor

Model: MixedLM Dependent Variable: Q("Abs(1 - Scf)")
No. Observations: 136 Method: REML
No. Groups: 68 Scale: 0.0005
Min. group size: 2 Log-Likelihood: 254.1779
Max. group size: 2 Converged: Yes
Mean group size: 2.0

Coef. Std.Err. z P> |z| [0.025 0.975]
Intercept 0.033 0.007 4.946 0.000 0.020 0.046
Processing[T.Masked] -0.003 0.004 -0.715 0.475 -0.010 0.005
Contrast[T.CBV] 0.028 0.009 3.122 0.002 0.011 0.046
Uid Var 0.001 0.015
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