
Adversarial Training for Automatic Speech
Recognition Systems

Gian Guido Parenza
Department of Information Technology

and Electrical Engineering (D-ITET)
Zurich, Switzerland

parenzag@student.ethz.ch

Tim Gretler
Department of Information Technology

and Electrical Engineering (D-ITET)
Zurich, Switzerland

tgretler@student.ethz.ch

Hendrik Klug
Department of Information Technology

and Electrical Engineering (D-ITET)
Zurich, Switzerland

klugh@student.ethz.ch

Abstract—In the past years, it has been shown that
neural networks are vulnerable to adversarial examples:
inputs specifically designed to produce a misclassification.
Previous work has shown that any given audio, including
music, can be perturbed such that it is recognised as any
desired phrase or silence by an automatic speech recog-
nition system. Furthermore, recently it has been shown
that such adversarial samples can be made imperceptible
to humans. This was a breakthrough in the field. Before
it, the samples generated could be easily identified as
adversarial by humans. To the best of our knowledge,
it has only been shown that these adversarial examples
can be successfully generated, however no work has yet
shown that an automatic speech recognition system can
be trained and made robust to such attacks. In this work,
we first produce imperceptible audio adversarial examples
on arbitrary full-sentence targets by means of a simple
but effective. Next, we train Deep Speech 2, a state-of-
the-art model in speech-to-text conversion tasks. Finally,
we show how the performance of the model trained with
adversarial audios did not worsen, whilst it has achieved
higher scores with respect to the original model on the
adversarial samples.

I. INTRODUCTION

Deep learning models have achieved state-
of-the-art results on a large set of fields, from
computer vision to natural language processing.
Some have also been shown to be working in
different settings on a wide variety of datasets with
little modifications to the original structure. One
of these is Deep Speech 2, a state-of-the-art model
in speech-to-text conversion tasks developed by
Baidu AI Research Lab, which has been originally
designed for end-to-end speech recognition in
both English and Mandarin, but can also be easily
modified and used with other languages [1].

These models, despite having achieved high
generalisation performances, are also known to
learn uninterpretable solutions that could have
counter-intuitive properties. More specifically, two
intriguing properties of neural networks have been
brought to the attention of the machine learning
community by Szegedy et al: the entire space of
activation, rather than the individual units, contains
the semantic information, and that neural networks
learn input-output mappings that are discontinuous.
In particular, the latter has left a footprint in the
research field introducing the now well-known term
of “adversarial examples” [2].

Since the work of Szegedy et al, more studies
have tried to understand the nature and explain
the existence of these adversarial examples. Two
attempts to answer the questions posed by Szegedy
et al were proposed by Schmidt et al. 2018 and
Bubeck et al. [3], [4]. The former suggests that for
classifiers to be robust to such attacks, they require
to be tailored to the specific dataset, whereas
the latter suggests that classifiers are vulnerable
to these perturbations not because of theoretical
limitations, but because of computational constrains.

More recently, adversarial examples became of
interest also in the audio domain. Of particular
relevance was the work of Nicholas Carlini and
David Wagner, who have demonstrated how it is
possible to generate inaudible adversarial audio
examples [5]. The task of making the distortion
inaudible is analogue to the one on images, where
minimising the distortion between an image and
the nearest misclassified example yields a visually
indistinguishable image. For the audio samples this

is not the case [6]. Thus, to make the audios sound
like the original ones, the human perceptibility
to audio has to be taken into account. The way
in which Carlini and Wagner were generating the
samples was making use of an iterative method that
maximises the Connectionist Contemporal Classifi-
cation (CTC) loss under the constraint of keeping
the distortion as “quiet” as possible. In particular,
the distortion metric they were using for their tests
was measured in Decibels (dB):

dBx(δ) = dB(δ)− dB(x) (1)

dB(x) = max
i

20 log10(xi) (2)

which was set to be smaller than a certain amount
of Decibels.

In a second paper, Yao Qin et al. made
advancements in both making imperceptible audio
adversarial examples and constructing perturbations
that are effective also when played over-the-air [7].
The major change from the previous work is that
they have made use of the psychoacoustic principle
of auditory masking [8]. More specifically, they
make use of frequency masking, where a louder
signal - the “masker” - can make signals of the
nearby frequencies imperceptible. In practice, given
the Short-Time Fourier Transform of the audio,
the power spectral density is computed. This is
then used to identify the global masking threshold
θx(k). Given this parameter, when a perturbation is
added to the audio and it is below the frequency
masking threshold of the naı̈ve audio, this will
then be inaudible. Lastly, given the difficulty in
generating the adversarial examples due to the lack
of a constraint on the magnitude of the perturbation,
a two-stage attack is applied.

Similarly to the work of Qin et al, we designed
our attacker in a way such that it takes into
account the psychoacoustic principles of auditory
masking. Additionally, we make use of a single-
stage optimisation and consider a `∞-bounded
distortion. Furthermore, we perform adversarial
training of the model as described by Madry et al.
and evaluate the results [9]. Lastly, we discuss the
results and show the benefits of adversarial training.

Fig. 1. Architecture of DeepSpeech 2. Various variants of this architectures
have been explored in the original paper. Image taken from [1]

II. MODELS AND METHODS

In this work, our aim is to generate imperceptible
untargeted adversarial samples. In agreement with
the definition of Qin et al., this corresponds to find-
ing a perturbation δ which when added to the input
induces classifier to produce general spelling errors.
Furthermore, the perturbation produced is such that
a human cannot distinguish between adversarial and
the original audio.

A. The ASR Model

The model we use to investigate the adversar-
ial training is Deep Speech 2, more precisely the
implementation of Sean Naren1 which has already
been pretrained on the dataset Libri Speech2 [10].
The model used is shown in Figure 1 and consists
of a serial stack of 2 convolutional layers, which
take as input the magnitude of the spectrogram of
the audio, followed by 5 bidirectional Long Short-
Term Memory (LMST) units. The output consists of
a Fully Connected Layer containing 29 nodes that
correspond to the 26 characters of the English alpha-
bet and 3 additional tokens corresponding to blank,
which is used to denote a stretch of silence, space
and apostrophe, to determine word boundaries.

1https://github.com/SeanNaren/deepspeech.pytorch
2http://www.openslr.org/12/

https://github.com/SeanNaren/deepspeech.pytorch
http://www.openslr.org/12/

B. The CTC Loss

To train the model, we make use of the
Connectionist Temporal Classification (CTC)
loss [5], [11]. This loss is suited for a particular
class of neural networks that perform sequence-to-
sequence tasks where the alignment between input
and output is not known.

The loss is computed in the following way: given
a sequence as input (the spectrogram), it returns
the probability over the output domain for each
element of the sequence (the 29 tokens). Next, the
sequence is reduced by removing duplicated tokens
(e.g. repetition of the same character h e l l o −→
h e l o), and the special tokens (e.g. blank). Once
the sequence is reduced and aligned to the label, it
is possible to compute the loss as follows:

CTC-Loss(f(x),p) = − logPr(p|f(x)) (3)

Where f(x) gives the probability over the char-
acters given the input and Pr(p|f(x)) is the prob-
ability of a given phrase p under the distribution
y = f(x). This is described in more detail in the
original paper [11]. To decode the output of the
network, we make use of a Greedy Decoder, which
searches for the most likely alignment. This solution
is not the best possible, an alternative is to use
a Beam Search Decoder. which evaluates multiple
alignments and evaluates the most likely one [5].

C. Adversarial Examples Generation

To generate the adversarial examples we make use
of the “Robustness” library to perform gradient as-
cent on the CTC-Loss [12]. This procedure defines a
particular class of adversary, a first-order adversary.
The distinction arises from the need to discriminate
adversaries that have access to the gradients of
the loss function with respect to the input, and
the ones that don’t. This distinction is also at the
base of the difference between white-box (complete
knowledge of the model and gradient information)
and black-box attacks. The procedure to generate the
adversarial examples follows the standard procedure
which is described in Algorithm 1, also known as
projected gradient descent (PGD) algorithm.

Of particular interest is the implementation of
the projection of the adversarial examples onto
a feasible set. This is not implemented in the

Algorithm 1: Adversarial Example Generation
Result: Adversarial Example
initialise the adversarial example as the original input;
for number of steps do

compute the loss given the adversarial input;
compute the gradient;
perform gradient ascent (descent) and update the
adversarial input;

project the adversarial input on feasible set;
end

same way as for computer vision tasks. More
specifically, when someone wants to generate
adversarial examples to attack models designed for
image classification tasks, the adversarial examples
are generated by changing the RGB values that
form the image within a certain constraint, which
is defined based on the ability of humans to
distinguish between different shades of the same
colour. Here, this metric would not work as
intended. Humans have a well-developed ability
to distinguish between sounds; hence, to make the
adversarial examples indistinguishable Qin et al.

Here, we propose a simpler implementation to
achieve similar results. The idea is to define a `∞
ball not directly on each element of the spectrogram,
but on the relative difference. Practically, given the
ratio between the additional adversarial component
and the original spectrogram, this has to be bounded
within the “pixel-specific” `∞-ball. A Pytorch based
implementation is shown here below:
1 def project(**kwargs):
2 diff = adv_example - original_input
3 diff = torch.clamp(
4 torch.div(diff, original_input + 1e-3),
5 - eps, + eps)
6)
7 return (diff + original_input).clamp_min(0.0)

On line 7, we clip the value of the adversarial
example to be positive, because we want to manip-
ulate only the magnitude of the spectral component.
In case we allowed for negative values, we would
have introduced a π phase shift which would have
compromised the reconstruction of the audio.

D. Adversarial Training

The formulation of the problem we are aiming
to tackle has been defined by Madry et al. The
problem can be viewed as a composition of a inner

maximization and outer maximization problem.
Where the attacker aims to find a perturbation of
the original input that results in a high loss (inner
maximization), whilst the model is optimized in
a way, such that it aims to modify its parameters
to minimize the loss given by the inner attack
(outer minimization) [9]. Such construction of the
problem gives rise to the well-known saddle point
problem which can be tackled by making use
of the projected gradient descent (PGD) to solve
the inner maximization problem, whilst the inner
minimization problem can be solved by means of
the simple gradient descent algorithm. Practically,
to generate our set of adversarial examples we
make use of the dedicated and well-documented
library: “Robustness”, which has been developed
by the MIT group “Mardy Lab”3 and that we have
adapted to our needs [12].

The training has been performed in the following
way, we have taken a set of δ as constraint, more
specifically we have chosen the values: 0.01, 0.1,
1 and 10. The training was limited to 15 epochs
due to the large dataset and computational costs. In
these epochs, we have set for the first 10 a linear
increase of the δ, ranging from 0 to the δ set for
training. During the evaluation, we have tested the
trained models and the native one on the original
audios and the adversarial examples produced for
each of the chosen δ.

Fig. 2. WER resulting from the evaluation of the different models.

3https://github.com/MadryLab/robustness

III. RESULTS

A. Dataset

The dataset that we use is Libri Speech, a publicly
available dataset derived from audiobooks. The data
selected for training have been randomly sampled
from the test-clean dataset without restrictions on
the duration of the audio.

B. Evaluation Metrics

To evaluate the performances of the trained net-
work and compare it to the native version of Deep
Speech 2, we report two metrics that are typically
used fot ASR systems: the word error rate (WER)
and the character error rate (CER). The CER is a
metric that provides information about the accuracy
of the transcriptions. Given an audio, the characters
are reduced to a string where the spaces have been
removed. Once the two transcripts are aligned, the
characters are compared one-to-one and the CER
is calculated as follows: CER = 100 ∗ EC

NC
, where

EC are the misclassified and MC the total number
of characters. The WER4 is a metric based on the
“Levenshtein distance” and is calculated as follows:
let S, D and I be the number of substitutions,
deletion and insertions of words, then the WER =
100 ∗ S+D+I

NW
, where NW is the total number of

words. Even though the WER is not particularly
meaningful to define the quality of the model. This
metric is important when somebody wants to make
a full-text search since it provides the success rate.
The results of the previously mentioned evaluation
are shown in Figure 2 and 3.

Fig. 3. CER resulting from the evaluation of the different models.

4Contrary to the CER, the WER can be greater than 100%

https://github.com/MadryLab/robustness

C. Evaluation of the Adversarial Examples

Here we report the results of the adversarial
attack. As described in the previous section
we have set the boundary of the `∞-ball to be
“pixel-specific” to emulate the effect of frequency
masking achieved by Qin et al. In Figure 4 the
magnitude of the Short-Time Fourier Transform
of the original audio is shown, whereas Figure 5
shows the difference the adversarial example and
the original spectrogram for δ = 1. For the other
values, similar results have been obtained. To be
specific, for smaller values of δ the differential
image is mainly white and is difficult to appreciate
the localization of the attack. On the other hand,
for δ = 10, the attacker starts to prefer certain
locations of the spectrum which make the color bar
saturate and make less noticeable the attack in the
other regions.

IV. DISCUSSION

In this work we successfully generated inaudible
adversarial examples (for δ = 0.01 and 0.1)
emulating the results of Carlini et al. but using
a different approach which led to an easier
implementation and a less costly generation of
those. In our experiments, we have trained 4
models, each on the same set of data but with
different values for the constraint. These models
have been tested together with the original model,
that we have assumed as the baseline, on 5 sets
of data: the original set, and 4 sets generated each
with the aforementioned δ values for the constraint.

The results we have obtained show how the ad-
versarial training made the models more robust to
a set of adversarial examples without significantly
worsening the performance on the original dataset.
Even though the results look promising, for the
future more should be done in terms of the pa-
rameters’ optimization. It would be of interest to
see how these models performed with the audios
generated using the technique from [7]. Since these
are not generated using an `∞-bounded, they belong
to another class of adversarial attacks. Given this
difference, even though the method implemented
tries to emulate the characteristics of the adversarial

0 0.5 1 1.5 2 2.5 3
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Fre
qu

en
cy

 [H
z]

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Fig. 4. The spectrogram of the native audio examples.

0 0.5 1 1.5 2 2.5 3 3.5
Time [s]

0
1000
2000
3000
4000
5000
6000
7000
8000

Fr
e
q
u
e
n
cy

 [
H

z]

1.0

0.5

0.0

0.5

1.0

D
if
f.

 A
m

p
lit

u
d
e

Fig. 5. The spectogram of the difference between the native and the adversary
example.

examples generated by Qin et al., the model might
not be robust to those.

V. SUMMARY

We have shown that it is possible to improve an
Automatic Speech Recognition System by training
it with adversarial examples and making it more
robust to such a class of attacks. The adversarially
trained model has significantly lower CER and
WER values for adversarial inputs than the original
Deep Speech 2 model and shows no significant
decrease in accuracy for native inputs.

REFERENCES

[1] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,” in
International conference on machine learning, pp. 173–182, 2016.

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[3] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Madry, “Adver-
sarially robust generalization requires more data,” 2018.

[4] S. Bubeck, E. Price, and I. Razenshteyn, “Adversarial examples from
computational constraints,” 2018.

[5] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted attacks
on speech-to-text,” 2018 IEEE Security and Privacy Workshops (SPW),
May 2018.

[6] L. Schönherr, K. Kohls, S. Zeiler, T. Holz, and D. Kolossa, “Adversarial
attacks against automatic speech recognition systems via psychoacoustic
hiding,” CoRR, vol. abs/1808.05665, 2018.

[7] Y. Qin, N. Carlini, I. Goodfellow, G. Cottrell, and C. Raffel, “Imper-
ceptible, robust, and targeted adversarial examples for automatic speech
recognition,” arXiv preprint arXiv:1903.10346, 2019.

[8] Y. Lin and W. H. Abdulla, “Principles of psychoacoustics,” in Audio
Watermark, pp. 15–49, Springer, 2015.

[9] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[10] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
an asr corpus based on public domain audio books,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5206–5210, IEEE, 2015.

[11] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd international
conference on Machine learning, pp. 369–376, ACM, 2006.

[12] L. Engstrom, A. Ilyas, S. Santurkar, and D. Tsipras, “Robustness (python
library),” 2019.

	Introduction
	Models and Methods
	The ASR Model
	The CTC Loss
	Adversarial Examples Generation
	Adversarial Training

	Results
	Dataset
	Evaluation Metrics
	Evaluation of the Adversarial Examples

	Discussion
	Summary
	References

